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TEACHER INSTRUCTIONS 

Sintering: Grain Boundaries, Interfaces, and Porosity 

Objective: To demonstrate how individual particles and powders can be processed and formed 
into large solid objects and investigate the material concept of porosity. 

Background Information: All materials must be processed in some way to achieve either a 
particular material property or create a specific shape. There are many different material 
processing techniques, but one that is fundamental to ceramic materials is sintering. Sintering is a 
processing technique by which a solid mass of material is formed from the fusion of many smaller 
pieces, often a powder. This is done primarily through the application of heat but sometimes by 
adding pressure concurrently.  It is unique in that sintering is a solid state process, unlike other 
common material shaping techniques that require melting the material to pour into a mold, 
followed by cooling. The typical temperatures used for sintering are around 2/3 of a material’s 
melting temperature, making it ideal for materials with extremely high melting points. Sintering 
has been used for centuries in the construction of pottery by ancient civilizations. However, 
recently, the advent of nanotechnology has used nanoparticles to create materials with novel and 
unique properties. 

Sintering is effectively a process where porosity, i.e. open space, is removed from compacted 
powder particles to form a solid mass.  This is a means of densification since you are decreasing 
the amount of volume that a given amount of mass takes up.  Material moves to the contact points 
between particles and fills in the open space. This accumulation of material at pores causes contact 
points to extend and become interfaces between grains, commonly called grain boundaries. This 
process is outlined in Figure 1 with a point contact between particles, marked by a red dot before 
sintering, becoming a grain boundary after sintering (the red line). Material moves to pores by 
diffusion facilitated by high temperatures.  

Figure 1: During sintering, high temperatures allow material to transport to the open space between powder particles. Eventually, 
the pores disappear resulting in a dense pore free object. 
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Why do the pores shrink in the first place? The pores shrink by material diffusing to the empty 
space creating grain boundary interfaces, which is driven by energy.  

Interfaces can be described in terms of energies because work should be applied to create the new 
surface area. For example, when you blow through a ring with a soap film to make a soap bubble, 
the blowing is work done on the soap film, resulting in the flat soap film bending out, creating a 
bubble. As the bubble grows, it increases its surface area and eventually becomes a sphere, as 
shown in Figure 2. The Greek symbol γ (gamma) is often used to denote the energy per unit area 
for surfaces in J/cm2.  If you have not met or exceeded the energy needed to make a spherical 
bubble (by blowing hard enough), the shape will go back to being flat when you stop adding work 
(stop blowing). 

Figure 2: In order to create a surface, work must be done over that area, just like when blowing a bubble. 

Title: How does the sintering process affect the porosity? 

Lab Description: In this lab, polyester beads are used as an analogy to demonstrate the process 
of sintering. Each polyester bead represents an individual powder particle. As the particles bond 
together in hot water, a porous solid is created which can be cut or broken to investigate its porous 
structure.  

Keywords:  

Interface: a boundary defining a change in a material’s chemistry, type, structure, etc. 
Grain: small individual ‘pieces’ of a larger portion of material. 
Grain Boundary: interface between two grains. 
Porosity/Pores: the open space between grains. 
Densification: a means of densifying a material; the volume that material takes up is decreased 
while the mass stays the same. 
Microstructure: structure of a material as observed through microscopic examination. 
Diffusion: movement of atoms from one location to another due to some driving force, such as 
high temperatures. 

Materials List: 

1 – 12 oz container of InstaMorph Moldable Plastic beads (10 grams/experiment) 
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Juice glasses, beakers, test tubes, or other clear containers – 1 per group to mix the hot water and 
InstaMorph beads. 
Pot holder/glove – a glove to protect hands from the hot water. 
Pen, Pencil, Fork/tongs, etc. – 1 utensil per group for retrieving beads from water. 
Paper towels or rags – for placing beads onto and absorbing spilled water. 
Scissors, kitchen shears, or tin snips – for cutting the sintered body in half to examine the pore 

structure. 
Water – for sintering the submerged beads together. 
Hot plate, stove, Bunsen burner, etc. – Something to heat water to the desired temperature. 
Thermometer – for measuring the temperature of the water as it is heated. 
Rulers or micrometers – for measuring pore sizes and other physical dimensions. 

Safety Precautions: It is recommended that a glove or pot holder be worn by students when 
retrieving the beads from the hot water to prevent any possible burns. Lab glasses should be worn 
by anyone nearby the shears cutting the sintered mass to protect eyes from plastic pieces. 
Depending on the age of the students, the teacher could do the cutting for the students. 
Furthermore, standard lab rules and procedures (e.g. using the items as described in the handout, 
not for any other purposes) should be followed. 

Optional Demonstration (to perform before experiment): 

An unglazed (not shiny) ceramic pot -gardening pots are excellent for this- can be used to 
demonstrate the concept of porosity in a real world ceramic.  The day before you plan to do the 
experiment, fill the unglazed pot with water and have the students record the height of the water 
line.  Let the pot sit overnight with the top covered by plastic food wrap or the like, and have the 
students record the height the next day that they come to class (it will be less because some of the 
water is absorbed into the pores in the pot).  Discuss with the students why they think the water 
line went down, and where the water could have gone.     

Instructions: 

1. Discuss with the students the basic equations discussed in the supplementary information.

2. The students should weigh 10 grams (g) of InstaMorph beads. If the beads are unable to be
weighed, the amount of beads needed for 10g can be calculated (refer to supplementary
information) [estimated time to complete: 10-15 minutes].

3. Heat enough water (1/4 cup for each group) to at least 150°F (65.5˚C) for students to
submerge their beads [time estimate: ~5 min. – can be done before class starts].

 Water can be heated in whatever way is most convenient (stove, microwave, hot
plate, electric water kettle, etc.).

 To keep InstaMorph moldable for longer and to speed up the bonding/sintering
process, the water can be heated above 150°F. CAUTION: This will increase the
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temperature of the beads and increase the chance for burns or other heat related 
injuries. 

 Either the teacher can heat the water and add it to student’s beakers, OR if the
teacher deems it appropriate, each group can heat the water themselves if there are
enough heat sources, heating vessels, thermometers, etc.

4. Students put the 10g of InstaMorph beads into a clear glass container, and either the
students or the teacher pour enough hot water to cover them.

 The container should not be wider than 1.5 inches so there are multiple layers of
beads on top of one another. Larger diameter containers will require larger amounts
of beads.

i. Consequences of a thin layer of beads are that the fracture surface for the
end of the lab will not have sufficient enough area to measure or clearly see
the pores.

 The water cools quickly below the activation temperature of the beads, keeping
them from bonding, so do not delay the transfer from the heat source to the beads.

5. Wait for the beads to change from opaque to clear as shown below [time estimate: < 10
min. – depends on temperature of water]:

 Have students record their observations.



5 

6. Being careful not to disturb the bead mass too much, remove the now “sintered” beads
from the water using the pen or fork and place them on a paper towel to cool and drain
[time estimate: < 5 min.].  Once cooled, the beads will return to an opaque color, as shown
below.

 Cooling can be accelerated by holding it under a cold running faucet or placing it
in a cool water bath.

7. Once cool enough to touch, task the students with examining the sintered mass and
recording their observations of its structure, strength, rigidity, etc.

8. Have the students calculate the percent porosity and/or percent theoretical density using
the procedure outlined in the Student Handout.
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9. Then use the scissors or shears to cut the porous body in half.

 These beads are remarkably strong when densely bonded together, in which case
regular, small scissors may not be sufficient to cut them. If the mass is thin or did
not bond well, it can be quite brittle and easier to cut through. This will vary
experiment to experiment.

10. Have students examine the microstructure of the cut face, looking for pores.

Lab Delivery Hints: 

1. This lab is best done in groups of 2-3 students. Together the group can weigh the beads or
work on estimating how many beads are needed if unable to weigh them.

2. There is more than one brand of this type of polymer bead. InstaMorph, shown in this
document was purchased from Amazon.com but there are also colored InstaMorph beads
as well, if desired.

3. The container should not be wider than 1.5 inches so there are multiple layers of beads on
top of one another. Larger containers will require larger amounts of beads. Using a 1.5 inch
diameter container will result in a 10 gram mass of approximate dimensions shown in the
image below:

4. Use glass containers – the beads can bond to plastic containers making clean up more
difficult.

5. Remind students to be careful not to smash/mush the beads when removing them from the
water so pores don’t collapse.

Troubleshooting: The time it takes for the beads to become clear and bond together is dependent 
on the temperature of the water, which can cool rapidly when heat is turned off, so water may need 
to be reheated multiple times if students are waiting, or heated above the target temperature in 
anticipation of it cooling. 170-175°F makes the beads bond quickly and allows time to transfer 
water from the heater to the vessel containing the beads.  
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If it is taking too long to bond the beads and become clear, increase the temperature of the water 
to around 170-180°F, but remember the considerations above. This should cause the beads to bond 
and become clear in under 1 minute and allow more time to get the water into student’s vessels. 
***Wear appropriate safety equipment to prevent any burning from the hot water*** 

Cleanup/Replacement parts: The beads are not reusable experiment to experiment. However, 
they can be heated and remolded if the students want to take them home. Otherwise, they should 
be thrown away. Ensure the water has been dried from the tools before storage. 

http://www.ceramics.org/pcsasciencekits
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TEACHER DISCUSSION QUESTIONS 

Sintering: Grain Boundaries, Interfaces, and Porosity 

Discussion Questions to Ask Before the Lab 

1. Ask students what type of things they can think of that may be created using sintering or
powder processing.

Discussion: Remind them that it is bonding of a powder by applying heat and sometimes
pressure. During winter, making a snowball is a direct application of sintering that most
people have experience with. Pressing snow between your gloves to make a snowball
applies pressure as well as heats the snow. The contact points between the small snow
particles melt and refreeze and the snowball bonds together.

It is common that people say pottery or coffee cups but you should emphasize that it isn’t 
just those things that are made via sintering. Most people think of those examples as 
ceramics, but many other functional materials use powder processing techniques. 3D 
printing of powdered metals is becoming a rapidly utilized process due to the ability to 
create complicated shapes. There is a 6 minute video showing such uses on YouTube: 
https://www.youtube.com/watch?v=cRE-PzI6uZA.  

Here are a few other examples of objects that are a direct result of sintering that students 
may know a few of: Teflon non-stick pan coatings, protective body armor and bulletproof 
windows, jet engine turbine blades and other parts that operate in high temperature 
environments, solar cell (photovoltaic) thin films, radioactive material containment, fuel 
cell components, kitchen cooktops, and bioactive scaffold implants for tissue and bone 
growth.  

2. Ask students what they think the benefits of the “near net shape” forming ability of
sintering might be (ie: the ability to make the object before sintering close to the shape you
want after sintering).

Discussion: Provide the example of a clay pot; it looks like a pot when the clay is wet and
molded, which is before sintering. After sintering, the shape still looks like the same pot,
just slightly shrunken due to densification and the removal of pores. This is near net shape
processing.

One benefit is the initial production shape of the part before sintering is very close to the 
final (net) shape, so the need for final finishing or shaping steps is reduced. Removing final 
steps such as grinding or cutting can eliminate production costs and reduce the time needed 
to make the object.  In many cases, ceramics are very difficult, or impossible to cut after 
sintering (due to their high hardness), so near-net shaped processing can be the only way 
to produce complex shapes. 

https://www.youtube.com/watch?v=cRE-PzI6uZA
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3. Are there any difficulties associated with the near net shaping of objects?

Discussion: Remind the students that you start with a porous object and through heating,
the object shrinks and becomes denser. What would happen if the object was very
complicated and had areas of varying thickness? One common difficulty is the less uniform
a shape is, differences in how the object shrinks can occur. The pieces that are thin may
shrink more than the thicker, larger pieces of the same object making the object distorted.

Discussion Questions to Ask After the Lab 

1. Have students think of different ways things can be heated. What methods would they think
would work better for reducing porosity of a part and why?  Remember that ceramics and
metals that are processed with sintering have very high melting temperatures.

Discussion: There are many different methods to heat an object: ovens, fire, 
microwaves, friction, etc. Some of the methods such as ovens are better at getting 
the powder uniformly hot for even sintering and porosity reduction. Others, such as 
fire, heat locally, in a small area. That area may sinter, but the rest would not.  

Students can relate to microwaves, which are exactly like the ones in their kitchens. 
They should think about whether or not it would work for ceramics. Do coffee mugs 
get hot? Usually not, but the liquid inside does. Microwaves emit high frequency 
radio waves, at just the right frequency that they preferentially interact with water, 
fat, and sugar molecules within organic matter (food) to cause bond vibrations, 
which cause the increase in temperature. This is why some plastics, also made of 
organic material, are not “microwave safe.” It is more difficult to heat up ceramics 
and glasses because the atoms are more restricted and bonded tightly to one another 
in these materials.  

2. Ask students how the performance of a ceramic material would change if it wasn’t sintered
to full density (i.e. if there were pores left).  Would it be stronger or weaker?  Are there
any advantages to having a structure that purposely has pores in it?

Discussion: When ceramics are used for structural (buildings, parking garages, etc.) 
or high impact (body armor, turbine blades, etc.), incomplete sintering (pores left 
in the material) would cause a decrease in performance – they would be weaker.  
The pores would act as weak spots in the material where cracks could easily 
propagate.  Sometimes ceramics are made to be purposely porous (contain many 
pores, often in a uniform arrangement).  The pores can act as a pathway between 
the material for things like water (ceramic filters-like those found in your filtered 
water bottles), ions (ceramic solid electrolytes in batteries), etc.  Porous ceramics 
are also used to mimic the material in your bone. 
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SUPPLEMENTARY INFORMATION 

Equations: 

𝐴𝑐𝑖𝑟𝑐𝑙𝑒 =
𝜋

4
𝑑2

Equation 1:  Area of a circle in terms of diameter. 

2𝑟 = 𝑑 Equation 2:  The relation of a circle’s radius (r) to its diameter (d). 

𝑉𝑏𝑒𝑎𝑑 =
1

6
𝜋𝑑3

Equation 3: Volume (V) of a single bead of diameter (d) by 
combining Equation 1 and Equation 2. 

𝑉𝑡𝑜𝑡𝑎𝑙 = 𝑉𝑏𝑒𝑎𝑑 × 𝑛 Equation 4: The total volume (Vtotal) is equal to the ‘n’ number of 
beads times the volume of an individual bead, Vbead 

𝑛 =
6

𝜋𝑑3
∗ (

𝑚

𝜌𝑏𝑒𝑎𝑑
) 

Equation 5: The number of beads (n) of density (ρ) and diameter 
(d) needed to generate a desired mass (m) can be 
calculated. This assumes spherical particles. 

𝜌𝑏𝑒𝑎𝑑 = 1.37
𝑔

𝑐𝑚3⁄
Density of a polyester thermoplastic bead1. 

𝐴𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑟𝑒𝑠 = 𝐴𝑎𝑣𝑔_𝑝𝑜𝑟𝑒 × 𝑛𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑟𝑒𝑠 Equation 6: The estimated total area of pores is the average area 
of a pore (Aavg_pore) multiplied by the total number of pores on the 
face (npores). 

% 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 =
𝐴𝑡𝑜𝑡𝑎𝑙_𝑝𝑜𝑟𝑒𝑠

𝐴𝑏𝑢𝑙𝑘
× 100 

Equation 7: The estimated percent of the face that is pores by using 
the total average porous area (Atotal_pores) to the area of the bulk 
solid (Abulk). 

% 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 = 1 − % 𝑃𝑜𝑟𝑜𝑠𝑖𝑡𝑦 
Equation 8: The estimated density of the solid based on how much 
open space (pores) exists. 

The Equation 5 can be used to calculate the number of beads needed for 10 grams if the student 
cannot weigh it. 

1 British Plastics Federation, Plastipedia: Polyesters (Thermoplastic) PETP, PBT, PET 
http://www.bpf.co.uk/plastipedia/polymers/Polyesters.aspx 
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STUDENT LAB HANDOUT 

Sintering: Grain Boundaries, Interfaces, and Porosity 

Background Information: All materials must be processed in some way to achieve either a 
particular material property or create a specific shape. There are many different material 
processing techniques, but one that is fundamental to ceramic materials is sintering. Sintering is a 
processing technique by which a solid mass of material is formed from the fusion of many smaller 
pieces, often a powder. This is done primarily through the application of heat but sometimes by 
adding pressure concurrently.  It is unique in that sintering is a solid state process, unlike other 
common material shaping techniques that require melting the material to pour into a mold, 
followed by cooling. The typical temperatures used for sintering are around 2/3 of a material’s 
melting temperature, making it ideal for materials with extremely high melting points. Sintering 
has been used for centuries in the construction of pottery by ancient civilizations. However, 
recently, the advent of nanotechnology has used nanoparticles to create materials with novel and 
unique properties. 

Sintering is effectively a process where porosity, i.e. open space, is removed from compacted 
powder particles to form a solid mass. This is a means of densification since you are decreasing 
the amount of volume that a given amount of mass takes up.  Material moves to the contact points 
between particles and fills in the open space. This accumulation of material at pores causes contact 
points to extend and become interfaces between grains, commonly called grain boundaries. This 
process is outlined in Figure 1 with a point contact between particles, marked by a red dot before 
sintering, becoming a grain boundary after sintering (the red line). Material moves to pores by 
diffusion facilitated by high temperatures.  

Figure 3: During sintering, high temperatures allow material to transport to the open space between powder particles. Eventually, 
the pores disappear resulting in a dense pore free object.  

Why do the pores shrink in the first place? The pores shrink by material diffusing to the empty 
space creating grain boundary interfaces, which is driven by energy.  
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Interfaces can be described in terms of energies because work should be applied to create the new 
surface area. For example, when you blow through a ring with a soap film to make a soap bubble, 
the blowing is work done on the soap film, resulting in the flat soap film bending out, creating a 
bubble. As the bubble grows, it increases its surface area and eventually becomes a sphere, as 
shown in Figure 2. The Greek symbol γ (gamma) is often used to denote the energy per unit area 
for surfaces in J/cm2.  If you have not met or exceeded the energy needed to make a spherical 
bubble (by blowing hard enough), the shape will go back to being flat when you stop adding work 
(stop blowing). 

Figure 4: In order to create a surface, work must be done over that area, just like when blowing a bubble. 

Title: How does the sintering process affect the porosity? 

Lab Description: In this lab, you will explore the material processing technique sintering using 
plastic beads and analyze the resultant porous microstructure. 

Figure 3: This lab begins with loose particles that, through the application of heat in the form of hot water, are sintered and bonded 
together. The resultant microstructure will be analyzed. 

Keywords: Grain, Grain Boundary, Interface, Surface Energy, Diffusion, Porosity, 
Microstructure 
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Materials List: 

10 grams InstaMorph beads 
Enough hot water (~150°F) to just cover the beads 
Beaker or container for the beads and water 
Utensil to retrieve the beads from the water 
Insulating gloves (hot-mitt) 
Paper towels for cleaning water 
Thermometer to monitor water temperature (optional) 
Hot plate to heat water to 150°F (optional) 

Safety Precautions: When retrieving the mass from the hot water, be sure to wear a thermally 
insulating glove to protect your hand from burns or other heat related injuries. Standard lab rules 
and procedures (only using the equipment as indicated in the instructions) should be followed. 

Instructions: 

1. Ensure you have all required materials to perform the lab.

2. Review the questions in the student handout and data sheet to get an idea of what you need
to pay attention to and record.

3. Weigh 10 grams of InstaMorph beads and put them into a clear glass container.

4. Using a thermometer to monitor water temperature, heat up the water to 150°F or the
instructed temperature determined by the teacher.

a. Be sure to put on heat insulating gloves to protect your hands from any potential
burns or heat related injuries while handling the hot water.

5. Make sure the experimental setup is ready and quickly transfer the heated water to the
beaker containing the polymer beads. Pour enough water into the beaker so that the beads
are completely covered.

6. Record the time needed for beads to turn clear and any observations during the sintering
process.

7. When the beads are completely clear, carefully remove the sintered mass from the water.
Being careful not to splash any hot water, using a pencil, fork or similar tool, place the
mass on a paper towel to drain.

a. CAREFUL: don’t squish the beads too much when retrieving them from the water.

8. Examine the sintered body and estimate what you think the percent of the material is open
space (pores) vs. material.

9. Once it is cool enough to handle (beads turn back to being opaque), record any observations
on the material’s apparent structure, strength and rigidity properties as compared to the
mound of beads you weighed out previously.

10. Approximately measure the pore diameters, number of pores, and the height and diameter
of the surface of the sintered mass (should be close to the diameter of your container); then
record the values onto the data sheet and calculate the percent porosity.
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a. First measure the diameter of the surface and calculate the area of the bulk material.
Use Equation 1, below.

𝑨𝒃𝒖𝒍𝒌 =
𝝅

𝟒
𝒅𝟐 Equation 1: The area of the surface including pores by measuring the 

diameter, approximating a circle. 

b. Count how many pores and record (n), and then measure the diameter of as many
of the pores as you can, based on your judgment.

c. Calculate the areas of pores considering a circular shape and average the values to
get a representative area.

d. Multiply that average pore area by the total number of pores you see (n) on the
surface to get a total pore area using equation 2.

𝑨𝒕𝒐𝒕𝒂𝒍_𝒑𝒐𝒓𝒆𝒔 = 𝑨𝒂𝒗𝒈_𝒑𝒐𝒓𝒆 × 𝒏𝒕𝒐𝒕𝒂𝒍_𝒑𝒐𝒓𝒆𝒔 Equation 2: The estimated total area of pores is
the average area of a pore (Aavg_pore) 
multiplied by the total number of 
pores on the face (npores). 

e. Calculate the porosity percentage, which will be the ratio of porous area (part d) to
the bulk area (part a) described by Equation 3.

% 𝑷𝒐𝒓𝒐𝒔𝒊𝒕𝒚 =
𝑨𝒕𝒐𝒕𝒂𝒍_𝒑𝒐𝒓𝒆𝒔

𝑨𝒃𝒖𝒍𝒌
× 𝟏𝟎𝟎 

Equation 3: The estimated percent of the face 
that is pores by using the total 
average porous area (Atotal_pores) to 
the area of the bulk material (Abulk). 

f. It may be easier to think of it terms of density, which is described by Equation .

% 𝑫𝒆𝒏𝒔𝒊𝒕𝒚 = 𝟏 − % 𝑷𝒐𝒓𝒐𝒔𝒊𝒕𝒚 Equation 4: The estimated density of the 
material based on how much open 
space (pores) exists. 

11. Cut the sintered bead mass in half, examine the cut surface, and record any observations
on the internal microstructure.

12. Complete the questions on the Student Question Handout.

EXTRA CREDIT  

Can you think of another, quicker way that could be used to find the % porosity of the sintered 
mass?  If so, find it.  Hint: you’ll need the density of a single instamorph polyester bead (1.37 
g/cm3). 

Clean Up: Wipe up any excess or spilled water with paper towels. Dry the utensils and beakers. 
The sintered beads can be reheated and molded so you can take pieces of the material home!
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Data Sheet for a Beads and Porosity 

Weight of beads in grams Time for beads to turn clear 

Estimated % of Pores Estimated %  of Dense Material 

Observations during sintering while beads where submerged in water: 

What are the properties of the cooled, sintered mass: 

What observations of the microstructure of the sintered body and porous surface, after 

cutting, can be made? 

Diameter of 

the surface 

Area of the surface of the 

bulk material, Abulk 

Height of 

sintered 

mass 

Measured pore diameters Calculated pore areas 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

1) 

2) 

3) 

4) 

5) 

6) 

7) 

8) 

9) 

10) 

Number of pores counted 

on surface (n) 

Calculation of average 

pore area, Aavg_pore 

Calculation of total pore area, 

Atotal_pores 

Calculations for % Porosity and % Density: 
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STUDENT QUESTION HANDOUT 

Sintering: Grain Boundaries, Interfaces, and Porosity 

1. What percent of the material did you estimate to be pores (open space) vs. material? How
different were the estimated values compared with the calculated % of pores and % of
dense material?  When you cut the material to look at the inside surface, would your
estimates of porosity have been more accurate?

2. Why did the porosity decrease when exposed to hot water?  If the beads were left in hot
water over night, would you expect higher porosity % or lower?

3. What relationship exists between the porosity and density?  If porosity is increased, do you
think strength will increase or decrease?

4. If the mass was put back into the hot water and you added pressure by pressing the beads
together using a fork, what would happen to the remaining porosity?
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The American Ceramic Society Materials Science Kits 

Warranty Disclaimer, Limitation of Liability and Safety Disclaimer 

NO WARRANTY – DISCLAIMER OF WARRANTY 

THE AMERICAN CERAMIC SOCIETY (ACerS), OFFERS THE MATERIALS SCIENCE KITS “AS-IS”, WITH NO WARRANTIES 
WHATSOEVER, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF MERCHANTABILITY, SAFETY, 
FITNESS FOR ANY PARTICULAR PURPOSE OR NON-INFRINGEMENT OF PATENTS, COPYRIGHTS OR OTHER 
PROPRIETARY RIGHTS OF OTHERS.  SOME STATES AND JURISDICTIONS DO NOT ALLOW LIMITATIONS ON IMPLIED 
WARRANTIES, SO THE ABOVE LIMITATIONS MAY NOT APPLY TO CUSTOMER.  WHEN THE IMPLIED WARRANTIES ARE 
NOT ALLOWED TO BE EXCLUDED IN THEIR ENTIRETY, THEY WILL BE LIMITED TO THE SHORTEST DURATION PERMITTED 
UNDER APPLICABLE LAW.  CUSTOMER MAY ALSO HAVE OTHER RIGHTS WHICH VARY FROM STATE TO STATE. 

WITHOUT LIMITING THE GENERALITY OF THE FOREGOING, ACerS DOES NOT WARRANT THAT EACH MATERIALS SCIENCE 
KIT IS COMPLETELY ERROR FREE, WILL OPERATE WITHOUT INTERRUPTION, OR IS COMPATIBLE WITH ALL EQUIPMENT 
AND SOFTWARE CONFIGURATIONS.  CUSTOMER EXPRESSLY ASSUMES ALL RISK FOR USE OF THE MATERIALS SCIENCE 
KITS. 

LIMITATION OF LIABILITY 

TO THE MAXIMUM EXTENT PERMITTED BY LAW, ACerS WILL NOT HAVE ANY LIABILITY OR RESPONSIBILITY TO 
CUSTOMER FOR DAMAGES OF ANY KIND, INCLUDING SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES (INCLUDING, 
WITHOUT LIMITATION, DAMAGES FOR LOSS OF DATA), ARISING OUT OF OR RESULTING FROM THE MATERIALS SCIENCE 
KITS, ANY COMPONENT, DOCUMENTATION, SERVICES OR MATERIALS MADE AVAILABLE TO CUSTOMER IN CONNECTION 
WITH THE MATERIALS SCIENCE KITS OR THE USE OR MODIFICATION OF ANY OF THEM, EVEN IF ACerS HAS BEEN 
ADVISED OF THE POSSIBILITY OF THE DAMAGES.  IN ANY CASE, ACerS’ AND ITS LICENSORS’ ENTIRE LIABILITY UNDER 
ANY PROVISION OF THIS AGREEMENT WILL BE LIMITED TO THE AMOUNT ACTUALLY PAID BY CUSTOMER TO ACerS FOR 
THE PRODUCT OR TEN DOLLARS ($10.00), WHICHEVER IS GREATER. Some states do not allow the limitation or exclusion 
of liability for incidental or consequential damages, or have legislation which restricts the limitation or exclusion of 
liability, so the above limitation may not apply to Customer. 

CALIFORNIA RESIDENTS 

California Residents: I understand that I am waiving rights with respect to claims that are at this time unknown or 
unsuspected, and in accordance with such waiver, I acknowledge that I have read and understand, and I hereby 
expressly waive, the benefits of section 1542 of the civil code of California, and any similar law of any state, country or 
territory, which provides as follows: “A general release does not extend to claims which the creditor does not know or 
suspect to exist in his or her favor at the time of executing the release, which if known by him or her must have materially 
affected his or her settlement with the debtor.” 

MATERIALS SCIENCE SAFETY DISCLAIMER 

The materials science kits contain lessons that are believed to be reliable regarding the safe use and handling of these 
materials in laboratories and student classrooms. ACerS, however, does not represent or warrant in this, or in any other 
publication, to specify minimum safety or legal standards or to address all of the compliance requirements, risks, or 
safety problems associated with the handling of hazardous materials, their use, or the methods prescribed for using 
them in laboratories or classrooms. This information is intended to serve only as a beginning point for information and 
should not be construed as containing all the necessary compliance, safety, or warning information, nor should it be 
construed as representing the policy of ACerS.  The kits should be used by minors (under 18) only with adult 
supervision. 

Without limiting the generality of the foregoing disclaimers, no warranty, guarantee, or other form of representation is 
made by ACerS as to the accuracy or sufficiency of the information and guidelines included with the materials science 
kits, and ACerS assumes no liability or responsibility concerning the use of such instructions and guidelines for any 
purpose.  It is the responsibility of the users of these materials to consult and comply with pertinent local, state, and 
federal laws, regulations, and standards with respect to the handling of materials.  Users of the materials science kits 
should consult with the school’s legal counsel or other professional advisers about the applicable laws, safety issues, 
and compliance issues for the storage of materials and the methods for using the materials in school classrooms and 
laboratories. 

THIS DISCLAIMER APPLIES TO ANY LIABILITY THAT IS, OR MAY BE INCURRED BY, OR ON BEHALF OF THE INSTITUTIONS 
THAT USE THE MATERIALS SCIENCE KITS; INCLUIDNG, WITHOUT LIMITATION, THE FACULTIES, STUDENTS, OR 
PROSPECTIVE STUDENTS OF THOSE INSTITUTIONS; AND ANY MEMBER OF THE PUBLIC AT LARGE; AND INCLUDES, BUT 
IS NOT LIMITED TO, A FULL DISCLAIMER OF ANY LIABILITY THAT MAY BE INCURRED WITH RESPECT TO POSSIBLE 
INADEQUATE SAFETY PROCEDURES TAKEN BY ANY USER.  




